skip to main content


Search for: All records

Creators/Authors contains: "Cook, E. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    California’s water resources rely heavily on cool‐season (November–March) precipitation in the Sierra Nevada. Interannual variability is highly volatile and seasonal forecasting has little to no skill, making water management particularly challenging. Over 1902–2020, Sierra Nevada cool‐season precipitation totals exhibited significant 2.2‐ and 13–15‐year cycles, accounting for approximately 40% of total variability and perhaps signifying potential as seasonal forecasting tools. However, the underlying climate dynamics are not well understood and it is unclear whether these cycles are stable over the long term. We use tree rings to reconstruct Sierra Nevada cool‐season precipitation back to 1400. The reconstruction is skillful, accounting for 55%–74% of observed variability and capturing the 20th‐century 2.2‐ and 13–15‐year cycles. Prior to 1900, the reconstruction indicates no other century‐long periods of significant spectral power in the 2.2‐ or 13–15‐year bands. The reconstruction does indicate significant cyclicity over other extended periods of several decades or longer, however, with dominant periodicities in the ranges of 2.1–2.7 and 3.5–8 years. The late 1700s through 1800s exhibited the highest‐amplitude cycles in the reconstruction, with periodicities of 2.4 and 5.7–7.4 years. The reconstruction should serve to caution against extrapolating the observed 2.2‐ and 13–15‐year cycles to guide future expectations. On the other hand, observations and the reconstruction suggest that interannual variability of Sierra Nevada cool‐season precipitation is not a purely white noise process and research should aim to diagnose the dynamical drivers of extended periods of cyclicity in this critical natural resource.

     
    more » « less
  2. Abstract

    The teleconnection of the El Niño/Southern Oscillation (ENSO) to instrumental precipitation and temperature during the cool season over North America is strongest and most temporally stable in the TexMex sector of northern Mexico and the borderlands of southwestern United States. The ENSO impact on North American hydroclimate expands and contracts out of this region on multidecadal timescales, possibly associated with the positive and negative phases of the Atlantic Multidecadal Oscillation. A subset of tree‐ring chronologies from the TexMex sector also has the strongest and most stable ENSO signal detected in the North American network, similar to the strong ENSO signal measured in instrumental climate data from the same region. This subset of chronologies is used to reconstruct the multivariate ENSO index (MEI) as a measure of ENSO impact on North American hydroclimate during the instrumental and preinstrumental eras. The reconstruction exhibits improved fidelity in the frequency domain and better registration of spatial changes in ENSO signal over North America when compared to an MEI reconstruction based on all ENSO‐correlated tree‐ring chronologies irrespective of temporal stability of correlation. When correlated with gridded instrumental and tree‐ring reconstructed Palmer drought indices across North America, the stable MEI estimate reproduces the changes in spatial impact of ENSO signal measured with instrumental data, and it reveals similar multidecadal changes in prehistory, potentially linked to the Atlantic Multidecadal Oscillation. The Great Plains drought of the 1850s and 1860s may have been an example of this Pacific‐Atlantic configuration.

     
    more » « less